Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The success of the unscented Kalman filter can be jeopardized if the required initial parameters are not identified carefully. These parameters include the initial guesses and the levels of uncertainty in the target parameters and the process and measurement noise parameters. While a set of appropriate initial target parameters give the unscented Kalman filter a head start, the uncertainty levels and noise parameters set the rate of convergence in the process. Therefore, due to the coupling effect of these parameters, an inclusive approach is desired to maintain the chance of convergence for expensive experimental tests. In this paper, a framework is proposed that, via a virtual emulation prior to the experiment, determines a set of initial conditions to ensure a successful application of the online parameter identification. A Bayesian optimization method is proposed, which considers the level of confidence in the initial guesses for the target parameters to suggest the appropriate noise covariance matrices. The methodology is validated on a five-story shear frame tested on a shake table. The results indicate that, indeed, a trade-off can be made between the robustness of the online updating and the final parameter accuracy.more » « less
-
Regional damage simulation is a promising method to prepare organizations for the unforeseeable impact of a probable seismic natural hazard. Nonlinear time history analysis (NLTHA) of the finite element models (FEM) of the buildings in a region can provide resembling results to the actual buildings’ damages and responses. This approach requires large-scale computational resources, and to improve efficiency, parallel processing and representing building FEM models with lumped mass models are proposed. However, the computing complexity is still far-reaching when high-performance computing is not available. The building inventory of a region consists of numerous similar buildings with a limited number of distinct structures. In this paper, we propose a data-driven method that runs the NLTHA for the distinct structures exclusively and infers the damage and responses of other buildings using a surrogate model. Considering the skewed distribution of the buildings in a region, a novel informative sample selection method is proposed that is designed for bimodal sampling of the input domain. We use the Gaussian process regression as the surrogate model and compare the performance of different sample selection methods. The proposed method is able to approximate the results of the regional damage simulation regarding total economic loss estimation with 98.99% accuracy while reducing the computational demand to about 1/7th of the simulation processing time.more » « less
-
The extent of loss in a seismic hazard can be moderated with on-time allocation of funds and initiation of recovery tasks. Among various examinations conducted following the hazard, buildings damages are assessed as part of the reconnaissance survey to learn and document the impact of the earthquake on structures. The results of the survey are used in financial aid estimation, which is crucial for the community rapid recovery acts after the hazard. Due to the urgent need for this information, the amount of information gained per unit of time should be optimized. This article aims at answering the question of how to maximize the information gain in the presence of resource constraints by directing the efforts of a reconnaissance surveying team. A data-driven method is proposed that actively learns the patterns of damage and recommends the most informative buildings to be inspected while considering the resource limitations. The framework utilizes an efficient active learning method based on mutual information and developed for Gaussian process regression (GPR) to identify the information-rich cases. To assess the contribution of information gain and resource allocation in the overall outcome of the damage inference, two simulated earthquake testbeds are studied. It is shown that in a co-optimization approach, damage labels of the majority of buildings can be accurately predicted after 1 week of damage inspections.more » « less
-
Abstract Post‐earthquake reconnaissance survey of structural damage is an effective way of documenting and understanding the impact of earthquakes on structures. This article aims at providing an efficient data‐based framework that reduces the required time for reconnaissance missions and predicts the damage intensities for every building in the affected region. We hypothesize that a joint selection of necessary structural and earthquake parameters along with sparse damage observations are sufficient to train a supervised learning algorithm and accurately infer the damage for other buildings in the region. Gaussian process regression is employed to prove the hypothesis for probabilistic inference of different damage indices. The algorithm performs efficiently by selecting a set of diverse and representative buildings for damage observations using K‐medoids clustering. To validate the hypothesis and the proposed method, the algorithm framework is implemented on two severe earthquake simulation testbeds. The impacts of different building and ground motion variables on the damage inference performance are discussed. Furthermore, the effectiveness of observation sampling by clustering in the post‐earthquake damage inference is compared with random sampling.more » « less
An official website of the United States government
